Numeracy

Last update: May 2011

Topic Editor:
Jeff Bisanz, PhD, University of Alberta, Canada
Table of content

Synthesis

Numerical Knowledge in Early Childhood
CATHERINE SOPHIAN, PHD, JUNE 2009

7

Early Predictors of Mathematics Achievement and Mathematics Learning Difficulties
NANCY C. JORDAN, PHD, JUNE 2010

13

Early Numeracy: The Transition from Infancy to Early Childhood
KELLY S. MIX, PHD, JUNE 2010

19

Learning Trajectories in Early Mathematics – Sequences of Acquisition and Teaching
DOUGLAS H. CLEMENTS, PHD, JULIE SARAMA, PHD, JULY 2010

25

Fostering Early Numeracy in Preschool and Kindergarten
ARTHUR J. BAROODY, PHD, JULY 2010

32

Mathematics Instruction for Preschoolers
JODY L. SHERMAN-LEVOS, PHD, JULY 2010

42
Synthesis

How important is it?

Numeracy is sometimes defined as understanding how numbers represent specific magnitudes. This understanding is reflected in a variety of skills and knowledge (ex. counting, distinguishing between sets of unequal quantities, operations such as addition and subtraction), and so numeracy often is used to refer to a wide range of number-related concepts and skills. These abilities often emerge in some form well before school entry. The idea of exposing young children to Early Childhood Mathematical Education (ECME) has been around for more than a century, but current discussions revolve around the goals of early training in numeracy and the methods by which these goals should be achieved. Early mathematical learning can and should be integrated in children’s everyday activities through encounters with patterns, quantity, and space. Giving children ample and developmentally appropriate opportunities to practice their skills in mathematics, can strengthen the link between children’s early abilities in mathematics and the acquisition of mathematical knowledge in school. Unfortunately, children do not all have an equal chance to exercise these skills, hence the importance of ECME. Research on numeracy and early mathematical skills is important to formulate the program and objectives of ECME.

Difficulties in mathematics are relatively common among school-age children. Approximately 1 in 10 children will be diagnosed with a learning disorder related to mathematics during their education. One of the most severe forms is developmental dyscalculia, which refers to an inability to count and tally collections of items and to distinguish numbers from one another.

What do we know?

Basic mathematical knowledge emerges in infancy. At 6 months of age, infants are able to perceive the difference between small sets of elements varying in quantity (2 vs. 3-object sets), and can even distinguish between larger quantities, provided that the ratio between two sets is large enough (ex. 16 vs. 32, but not 8 vs. 12). These preverbal representations become more refined over time, and they form the early, though not sufficient, building blocks of future mathematical learning.

One achievement in numeracy is the acquisition of fact fluency. Fact fluency refers to the
knowledge necessary to produce sums and differences in a flexible, timely and accurate manner. In the toddler years, children progressively acquire the requirements for fact fluency, often beginning with intuitive numbers (e.g., know the meaning of one, two, three), leading to the ability to recognize that, for example, any set of three elements has a larger count than a set of two elements.

As they get older, children develop more advanced number skills. By age 3, they begin to be proficient in some nonverbal, object-based tasks, such as understanding the process of adding and subtracting, and judging one set as having a larger quantity than a second one. Although preschoolers can match collections of 2, 3, and 4 elements if the objects are of similar size or shape, they still struggle when the objects are highly dissimilar (e.g., matching two animal figurines with two black dots). Preschool children are also likely to get easily distracted by superficial features of a set (e.g., judging a set of items as having a larger quantity than another equal set because the items are disposed in a longer row). Research is currently under way to determine how knowledge about quantities in infancy is related to preschool numerical competencies and later school achievement.

Although most children can naturally discover mathematical concepts, environment and cultural experiences play a role in advancing children’s knowledge about numbers. For instance, language acquisition allows children to solve verbal problems and develop a number sense (e.g., understanding cardinality, the total number of elements in a set). Children who lack early experiences with numbers tend to lag behind their peers. For instance, children from economically disadvantaged families tend to display poor numeracy skills early on, and these deficiencies later translate to mathematical difficulties in school. Performance on numerical problems and the kinds of cognitive strategies children use are likely to vary considerably across children. Even the range of one child’s responses from one trial to the next can be substantial.

Promoting early competencies in numeracy is important because of its relation to children’s mathematical readiness at school entry and beyond. Preschool children who have acquired the ability to count, name numbers, and make distinctions between different quantities tend to perform well on numerical tasks in kindergarten. In addition, children’s good numerical abilities predict later school achievement more strongly than their reading, concentration, and socioemotional skills.

What can be done?
Given children’s natural dispositions to learn about numbers, they should be encouraged to freely explore and practice their abilities in a range of unstructured activities. These learning experiences should be enjoyable and developmentally appropriate so that children stay engaged in the activity and do not get discouraged. Playing board games and other activities involving experiments with numbers can help children develop their numeracy skills. Materials such as blocks, puzzles, and shapes can also encourage the development of numeracy.

Parents can foster their child’s numerical knowledge by creating meaningful experiences with numbers paired with appropriate feedback (ex. asking the child how many feet she has, and using her response to explain why she needs two, and not one shoe). Parents and teachers should also create spontaneous educational moments that encourage the child to think and talk about numbers. Numbers can be introduced in several domains, including play (dice-throwing games), art (drawing a number of stars), and music (keeping a tempo of 2 or 3 beats).

Taking on children’s perspective and understanding that their interpretations of mathematical problems are different than adults’ are important components of effective education. Teachers need to know that numeracy follows a developmental process, and numerical activities must therefore be designed accordingly. To optimize interventions aimed at numeracy, kindergarten screening should ensure that children can recognize the quantity of small sets of objects (2 and 3) and make the distinction between these and larger sets (4 or 5 objects).

Early interventions in mathematics have important implications for school readiness. A successful ECME program includes a stimulating environment containing objects and toys that encourage mathematical reasoning (ex., table blocks and puzzles), play opportunities where children can develop and expand their natural mathematical abilities on their own, and teachable moments where preschool teachers ask questions about children’s mathematical discoveries.
Numerical Knowledge in Early Childhood

Catherine Sophian, PhD

University of Hawaii, USA

June 2009

Introduction

Research on the numerical knowledge of young children has grown rapidly in recent years. This research encompasses a wide range of abilities and concepts, from infants’ ability to discriminate between collections containing different numbers of elements\(^1,2\) to preschoolers’ understanding of number words\(^3,4\) and counting,\(^5,6,7\) and their grasp of the inverse relation between addition and subtraction.\(^8,9\)

Subject

Research on young children’s numerical knowledge provides an important foundation for the formulation of standards for early childhood education\(^10\) and for the design of early childhood mathematics curricula.\(^11,12,13\) Further, the mathematics knowledge that children acquire before they begin formal schooling has important ramifications for school performance and future career options.\(^14\) An analysis of predictors of academic achievement, based on six longitudinal data sets, found that children’s math skills at school entry predicted subsequent school performance more strongly than did early reading skills, attentional skills or socioemotional skills.\(^15\)

Problems

Fundamentally, numeracy entails understanding numbers as representations of a particular kind of magnitude. Correspondingly, understanding the development of numeracy in early childhood entails understanding both how children come to understand the basic quantitative relations that numbers share with other kinds of quantities and how they come to understand the aspects of number that distinguish it from other kinds of quantities.

Research Context

Piaget’s classic research on logico-mathematical development investigated children’s understanding of general properties of quantity such as seriation and the conservation of
equivalence relations under certain kinds of transformations.16 His view, however, was that this kind of knowledge emerges only with the acquisition of concrete-operational thinking, around 5-7 years of age. Subsequent researchers17 undertook to demonstrate that younger children have considerably more numerical knowledge than Piaget recognized; and contemporary research provides evidence of a wide range of early numerical abilities.18

Key Research Questions

An influential but controversial claim in current research literature on early numerical abilities holds that the brain is “hard wired” for number.19,20 This idea is often supported by evidence of numerical discrimination by human infants and by animals.21 Critics of innatist (philosophical doctrine that holds that the mind is born with ideas/knowledge) accounts of numerical knowledge, however, note the pervasiveness of developmental change in numerical reasoning,22 the slow differentiation of number from other quantitative dimensions,23 and the contextualized nature of early numerical knowledge.24 Further, accumulating evidence indicates that language24 and other cultural products and practices25,26 make enormous contributions to young children’s acquisition of numerical knowledge.

Recent Research Results

Numerical knowledge in infancy

One of the most active areas of current research concerns the numerical abilities of infants. Kobayashi, Hiraki and Hasegawa1 used discrepancies between visual and auditory information about the number of items in a collection to test for numerical discrimination in six-month-olds. They showed infants objects that made a sound when dropped onto a surface, and then dropped two or three of the objects behind a screen so that the infants heard the tone each item made but could not see the items. They then removed the screen to reveal either the correct number of objects or a different number (3 if there had been 2 tones, and vice versa). Infants looked longer when the number of items revealed did not match the number of tones, indicating that they were able to distinguish between two and three items. Other research indicates that six-month-old infants can also discriminate between larger numerical quantities, provided the numerical ratio between them is large. Six-month-old infants discriminate between 4 vs. 827 and even 16 vs. 32.28 When the contrast is reduced (for example, 8 vs. 12), however, six-month-old infants fail29 but older ones succeed.2 Thus, infants become able to make finer numerical discriminations as they
Young children’s knowledge about numerical relations

Because numbers represent a kind of magnitude, a fundamental aspect of numerical knowledge pertains to equal, less-than and greater-than relations between numerical quantities. Somewhat surprisingly, in light of the infancy findings, it is a significant developmental achievement for preschool children to compare sets numerically, particularly when that entails disregarding other differences between the sets.

For example, Mix studied the ability of three-year-olds to numerically match a set of 2, 3 or 4 black dots. This task was easy when the manipulatives children were given were perceptually similar to the dots they were to match (e.g., black disks, or red shells about the same size as the dots). However, children’s performance dropped when the manipulatives contrasted perceptually with the dots (e.g., lion figurines or heterogeneous objects).

Muldoon, Lewis, and Francis assessed four-year-olds’ ability to evaluate the numerical relation between two rows of blocks (with 6-9 items per row) in the face of misleading length cues, that is, when two unequal-length rows contained the same number of items, or two equal-length rows contained different numbers of items. Most children relied on length comparisons rather than on counting the items to compare the rows. However, a three-session training procedure led to better performance, particularly among children who, as part of the training, were asked to explain why the rows were in fact numerically equal or unequal (as indicated by the experimenter).

Research Gaps

While experimental data concerning early numeracy is accumulating rapidly, the absence of theoretical accounts that incorporate the full range of empirical results limits our understanding of how the diverse findings already obtained fit together and what issues remain to be resolved. In the infancy literature, for example, competing accounts of early numerical abilities have generated much research in the past few years, yet the findings have not lessened the theoretical controversy. In advancing theoretical conclusions, researchers need to be cognizant of the entire corpus of findings, and their theories need to be formulated precisely enough that they can be differentiated empirically.
In addition, researchers need to gather better information about the processes that lead to advances in early numeracy knowledge. We know that young children's performance is affected by contextual variables ranging from culture and social class32 to patterns of parent-child33,34 and teacher-child35 interaction. As yet, however, we have only small pieces of information, mostly from experimental training studies7,25,36 about how particular experiences alter children's numerical thinking. Research that provides converging data about (a) young children's everyday numerical experiences, and how they vary with the age of the child, and (b) the experimental effects of those kinds of experiences on children's thinking, would be especially helpful.

Conclusions

The available research on young children’s developing knowledge about number supports four generalizations that have important implications for policy and practice. First, numerical development is multifaceted. Early childhood numeracy encompasses much more than counting and knowing some elementary arithmetic facts. Second, notwithstanding the number-related abilities evidenced even by infants, age-related change is pervasive. In age group comparisons, the older children nearly always perform better. Third, variability is pervasive. Individual children vary in their performance across different numerical tasks,37 in their engagement in particular sorts of numerical reasoning across different contexts,3 and even in their trial-to-trial responses within a single task.5,38 Finally, children’s progress in acquiring numerical knowledge is highly malleable. It is influenced by informal activities such as playing board games,25 by experimental activities designed to illuminate numerical relationships,7,36 and by variations in the ways in which parents33,34 and teachers35 talk to children about numbers.

Implications

An important contribution that research on early childhood numeracy can make to policy and practice is to inform the goals we set for early mathematics instruction. Just as numerical development in early childhood is multi-faceted, the goals of early childhood instructional programs should be much broader than enhancing children’s counting skills or teaching them some basic arithmetic facts. Numbers, like other kinds of magnitudes, are characterized by relations of equality and inequality. At the same time, they differ from other kinds of magnitudes in that they are based on the partitioning of an overall quantity into units. Instructional activities that encourage children to think about relationships between quantities and effects of transformations such as partitioning, grouping, or rearranging those relationships may be helpful.
in advancing children’s understanding of these ideas. The variability and malleability of young children’s numerical thinking indicate the potential for early childhood instructional programs to contribute substantially to children’s growing knowledge about numbers.

References

Early Predictors of Mathematics Achievement and Mathematics Learning Difficulties

Nancy C. Jordan, PhD
University of Delaware, USA
June 2010

Introduction

Mathematics difficulties are widespread. Up to 10% of students are diagnosed with a learning disability in mathematics at some point in their school careers.1,2 Many more learners struggle in mathematics without a formal diagnosis. Mathematics difficulties are persistent, and students who have difficulties may never catch up to their normally achieving peers.

Subject

Foundations for mathematics achievement are established before children enter primary school.3,4 Identification of key predictors of mathematics outcomes provides support for screening, intervention and progress monitoring before children fall seriously behind in school.

Problem

The consequences of poor mathematics achievement are serious for everyday functioning, educational attainment, and career advancement.5 Mathematics competence is necessary for entry into STEM (science, technology, engineering and mathematics) disciplines in college and for STEM occupations.6 There are large group differences in mathematics achievement related to socioeconomic status7 as well as individual differences in fundamental learning abilities.8 These differences are already present in early childhood and increase over the course of schooling.

Research Context

Longitudinal studies of characteristics of children with mathematics difficulties have identified important targets for intervention. Most children enter school with \textit{number sense} that is relevant to learning school mathematics. Preverbal components of number (e.g., exact representations of small quantities and approximate representations of larger quantities) develop in infancy.9,10,11 Although these primary foundations are thought to underlie learning of conventional mathematics skills, they are not sufficient. Most children with difficulties in mathematics are characterized by weaknesses in secondary symbolic number sense related to whole numbers, number relations
and number operations12 – areas that are malleable and influenced by experience.13

Key Research Questions

In the area of literacy, reliable and valid early screening measures have led to effective interventions and supports in early childhood and later.14 Intermediate measures closely tied to reading (e.g., knowledge of letter sounds) are more predictive of reading achievement than are more general competencies. Similarly, in the numeracy area, early competencies that are allied with the mathematics children are required to do in school are most predictive of mathematics achievement and difficulties.15 Key longitudinal predictors of mathematics performance need to be identified for early screening.

Recent Research Results

Early number competencies are important for setting children’s achievement trajectories in mathematics.16,17 Mathematics difficulties and disabilities have their roots in weak number sense.18,19 Children with developmental dyscalculia, a severe form of mathematics disability, are characterized by deficits in recognizing and comparing numbers and in counting and enumerating sets of objects.18

Longitudinal predictors

Short-term longitudinal studies (from the beginning to the end of the kindergarten year) reveal that numeracy indicators of counting, quantity discrimination, and number naming are moderate to strong predictors of mathematics achievement.20,21,22 Moreover, performance on numeracy indicators in preschool predicts performance on similar measures in kindergarten.23 Low-income children enter kindergarten well behind their middle-income peers on numeracy indicators, and this gap does not narrow during the course of the school year.12

Longitudinal studies over multiple time points, from the beginning of kindergarten through the end of Grade 3, suggest that foundational number sense supports the learning of complex mathematics associated with computation as well as applied problem solving.15,17,24,25 Kindergarten numeracy related to counting, numerical magnitude comparisons, nonverbal calculation, and verbal arithmetic predict mathematics level and rate of achievement in Grades 1 through 3. The low mathematics achievement of high-risk, low-income students is mediated by early number competence. Number competence also predicts later mathematics outcomes over and above IQ variables.26 Kindergarten competence with simple arithmetic calculations involving addition and
subtraction is most predictive of later mathematics achievement. Because early number competencies are achievable in most children, their intermediate effects provide direction for early intervention.

Underlying pathways

Three underlying cognitive pathways—quantitative, linguistic and spatial—contribute independently to number competencies in preschool and kindergarten. Linguistic skills are unique predictors of number naming, whereas quantitative skills are unique predictors of nonverbal calculation; spatial attention is a distinct predictor of both types of early numeracy. These precursor pathways relate differently to mathematical outcomes two years later (e.g., the linguistic but not the quantitative pathway is uniquely predictive of geometry and measurement concepts). A pathway model may explain why learners perform relatively well in one area of mathematics but not in another.

Research Gaps

Screening tools for identifying foundational number competencies in preschool and kindergarten need to be developed and validated for use in schools, clinics and other educational settings. Interventions for children with, or who are at risk for, mathematics learning difficulties should be devised and evaluated through randomized controlled studies. In particular, researchers must study how gains in specific areas of number competence can be achieved most effectively and whether gains can be sustained over time and generalized to mathematics learning. Further it is important to differentiate more and less effective methods of increasing number competence.

Conclusions

Difficulties with mathematics are pervasive and can have lifelong consequences. Foundational number competencies develop before Grade 1 and are highly predictive of mathematics achievement and difficulties. Higher levels of kindergarten number competence predict statistically significant and substantively meaningful performance in mathematics applications and computation at the end of Grade 3. Symbolic number competencies associated with whole number relations, and operations are particularly important. Number competence depends on language abilities (e.g., knowing number names), as well as on quantitative and spatial knowledge (combining and separating sets). Although there are poorer long-term outcomes for low-income children than for middle-income children, mathematics achievement is moderated by
early number competencies. Low-income children enter school with relatively few number-related experiences, which contributes to their disadvantage. The intermediate effect of number competence on mathematics achievement suggests that it should be emphasized in preschool and kindergarten. Overall, early number sense is critical for setting mathematics trajectories in mathematics throughout elementary school.

Implications for Parents, Service, and Policy

In today’s schools, mathematics learning difficulties and disabilities often are not identified before Grade 4. Early interventions in mathematics are far less common than are those for reading. Kindergarten teachers should screen students for numeracy difficulties, similar to the way that most screen for early literacy difficulties. Preschools and kindergartens should provide mathematics experiences and instruction in number, number relations and number operations. This number core should emphasize the number word list, counting principles related to cardinality and one-to-one correspondence, comparing set sizes, and joining and separating sets. Number lists and simple board games using number lists can help children make sense of quantities. Curriculum developers in early childhood should focus their materials on these core number foundations. Children in schools serving low-income communities are especially at risk for learning difficulties with mathematics. Low-income children enter kindergarten well behind their middle-income counterparts. Early interventions can help all children build the foundations they need to achieve in mathematics.

References

Early Numeracy: The Transition from Infancy to Early Childhood

Kelly S. Mix, PhD
Michigan State University, USA
June 2010

Introduction

Number concepts emerge before formal schooling. Preschool children exhibit verbal skills, such as counting, and basic concepts of equivalence, ordinality, and quantitative transformation. Although researchers agree that these abilities exist in early childhood, they continue to debate when, and by what mechanisms, these abilities emerge. In other words, what are the developmental origins of early numeracy?

Subject

Research on numeracy has traditionally focused on verbal counting. However, the notion that numeracy might emerge in infancy and toddlerhood shifted the focus toward nonverbal abilities. This shift expanded the range of behaviours included in early numeracy, a change that has direct implications for early childhood education and assessment. This shift also raised questions about the developmental origins of math disabilities and gaps in mathematical achievement, such as those associated with difference socioeconomic groups.

Problems

Current developmental accounts differ in the weight given to nonverbal versus verbal representations.

Some argue the core conceptual structure for number is inborn and takes the form of a nonverbal representation that is similar to verbal counting. On this view, a major developmental achievement is mapping verbal number words onto their nonverbal referents.

Others claim innate processes contribute to numerical development but do not constitute a complete conceptual system for number. These accounts incorporate both preverbal counting and a second representational format based on object tracking. They characterize verbal
counting as a conceptual catalyst that permits integration of the two nonverbal representations, thereby transcending their inherent limitations and achieving a true concept of number.

Yet other accounts incorporate object-based representations but claim that these representations develop during early childhood. On this view, object representations of number are not precise, even for small sets. Instead, they are thought to approximate number with increasing accuracy due to (1) age-related increases in working memory capacity, and (2) interactions between partial knowledge of the number words and recognition of small numerosities in specific contexts.

Some argue that number concepts are extracted from the counting system itself, without support from nonverbal representations. Studies have shown that children do not understand counting principles until they have mastered counting procedures. It has also been argued that children cannot connect labels for small sets to the conventional counting system because they cannot pick out the natural number sequence from other sequences.

Research Context

Because research has focused on the emergence of verbal numeracy within a nonverbal conceptual base, existing experiments include a mixture of verbal and nonverbal methods. In the verbal realm, investigators measure various subcomponents of counting (e.g., asking children to recite the count list, count a set of objects, or name a set’s cardinality). In the nonverbal realm, investigators use object-based tasks that do not require verbal counting. With very young children and infants, looking time procedures (e.g., habituation) and reaching tasks are common.

Key Research Questions

A major aim has been to describe the numerical sensitivity of infants and very young children. Researchers want to know how much children understand about number before acquiring conventional skills. The specific profile of nonverbal strengths and weaknesses is sometimes used to argue for a particular developmental account. Another major research goal is describing the emergence of verbal numeracy in great detail. In this research, the potential interactions between verbal and nonverbal numeracy is carefully considered.

Recent Research Results

Numerical sensitivity in infants
Early habituation research indicated infants could discriminate between small sets of objects. For example, when babies were shown a series of object sets equated for number (e.g., two), but varying in color, shape, and position, their looking time gradually decreased. When a new number of objects was shown (e.g., three), looking times increased, suggesting that infants detected the change in number. Similar experiments have suggested infants can discriminate large sets of items in both visual and auditory displays, perform simple calculations over objects, and detect numerical relations across modalities.

Nonverbal measures in early childhood

Children perform object-based number tasks much earlier than they demonstrate similar understandings in verbal tasks. For example, preschoolers solve simple object-based addition and subtraction problems (e.g., 2 + 2) years before they can solve analogous verbal problems. Similarly, children judge ordinality and equivalence in forced choice tasks much earlier than they can compare the same sets verbally, via counting. Competence on nonverbal measures emerges between 2½ and 3 years of age.

Development of verbal counting

Verbal counting encompasses three major subskills. First, children must learn the sequence of count words. The first 10 count words are usually memorized by age 3 years. Children learn to generate numbers using the decade structure (teens, twenties, etc.) around 6 years of age. Second, young counters must coordinate words and objects, such that each item in a set is tagged once and only once. Children make many errors as they discover and master tagging procedures, peaking in frequency between 36 and 42 months of age. Third, children learn that the last word in a count represents its cardinal value (e.g., when you count, “1-2-3,” you have three things). Interestingly, children gain this insight before mastering verbal counting procedures, which suggests they access the cardinal word principle via experiences with small sets. In fact, small set sizes (i.e., 1-3) may provide the only context for discovering the cardinal word principle because these can be both counted and labeled without counting.

Research Gaps

A persistent problem has been reconciling infants’ apparent precocity for number with the struggles exhibited by preschool children on similar tasks. For example, if infants can represent
and compare large object sets as some have claimed, why can’t preschool children match large sets until after they have learned to count? Such discrepancies have fueled vigorous debate about the meaning of the infant work, and articulating these literatures remains a significant challenge. For example, researchers have only begun to ask whether infant sensitivity to quantity is connected to preschool numeracy and, likewise, whether preschool numeracy is connected to subsequent achievement in school mathematics.

Another unexplored question is how children coordinate discrete and continuous quantity. Infants’ perception of continuous amount is well established. Some have argued use of continuous amount actually explains infants’ performance on numerical tasks. Regardless of whether infants process continuous quantity, discrete number or both, research is needed to determine what causes them to shift attention from one type of quantification to the other, as well as the developmental changes that occur as children learn how continuous and discrete quantity are related (e.g., size does not affect counting, unless you are counting measurement units).

Finally, much remains to be learned about the interactions between nonverbal quantification and verbal counting. Some contend that whatever preverbal infants can do or understand is necessarily innate because it emerges without verbal input. However, others have argued that even infants who do not speak about number themselves have nonetheless been exposed to number language, and thus it is not clear that infant competencies are either nonverbal or innate. A related issue is how children acquire the meanings of the number words and the extent to which this relies on a nonverbal foundation. Current research is also exploring whether acquisition of the plural mediates these interactions.

Conclusions

Evidence of numerical competence in infants has raised interesting questions about the origins of numeracy and the conceptual resources young children use to acquire verbal counting. However, further research is needed to reveal what this infant competence entails and precisely how it connects to subsequent nonverbal and verbal development.

References

Learning Trajectories in Early Mathematics - Sequences of Acquisition and Teaching

Douglas H. Clements, PhD, Julie Sarama, PhD
Graduate School of Education, University at Buffalo, USA, The State University of New York at Buffalo, USA
July 2010

Introduction

Children follow natural developmental progressions in learning and development. As a simple example, children first learn to crawl, which is followed by walking, running, skipping, and jumping with increased speed and dexterity. Similarly, they follow natural developmental progressions in learning math; they learn mathematical ideas and skills in their own way. When educators understand these developmental progressions, and sequence activities based on them, they can build mathematically enriched learning environments that are developmentally appropriate and effective. These developmental paths are a main component of a learning trajectory.

Key Research Questions

Learning trajectories help us answer several questions.

1. What objectives should we establish?
2. Where do we start?
3. How do we know where to go next?
4. How do we get there?

Recent Research Results

Recently, researchers have come to a basic agreement on the nature of learning trajectories. Learning trajectories have three parts: a) a mathematical goal; b) a developmental path along which children develop to reach that goal; and c) a set of instructional activities, or tasks, matched to each of the levels of thinking in that path that help children develop higher levels of
thinking. Let's examine each of these three parts.

Goals: The Big Ideas of Mathematics

The first part of a learning trajectory is a *mathematical goal*. Our goals are the *big ideas of mathematics*—clusters of concepts and skills that are mathematically central and coherent, consistent with children’s thinking, and generative of future learning. These big ideas come from several large projects, including those from the National Council of Teachers of Mathematics and the National Math Panel. For example, one big idea is that *counting can be used to find out how many are in a collection*. Another would be, *geometric shapes can be described, analyzed, transformed and composed and decomposed into other shapes*. It is important to realize that there are several such big ideas and learning trajectories, depending on how you classify them, there are about 12.

Development Progressions: The Paths of Learning

The second part of a learning trajectory consists of levels of thinking; each more sophisticated than the last, which lead to achieving the mathematical goal. That is, the developmental progression describes a typical path children follow in developing understanding and skill about that mathematical topic. Development of mathematics abilities begins when life begins. Young children have certain mathematical-like competencies in number, spatial sense, and patterns from birth.

However, young children’s ideas and their interpretations of situations are uniquely different from those of adults. For this reason, good early childhood teachers are careful not to assume that children “see” situations, problems, or solutions as adults do. Instead, good teachers interpret what the child is doing and thinking; they attempt to see the situation from the child’s point of view. Similarly, when these teachers interact with the child, they also consider the instructional tasks and their own actions from the child’s point of view. This makes early childhood teaching both demanding and rewarding.

The learning trajectories we created as part of the Building Blocks and TRIAD projects provide simple labels for each level of thinking in every learning trajectory. Figure 1 illustrates a part of the learning trajectory for counting. The Developmental Progression column provides both a label and description for each level, along with an example of children's thinking and behavior. It is
important to note that the ages in the first column are approximate. Without experience, some children can be years behind this average age. With high-quality education, children can far exceed these averages. As an illustration, 4-year-olds in our Building Blocks curriculum meet or surpass the “5-year-old” level in most learning trajectories, including counting. (For complete learning trajectories for all topics in mathematics, see Clements & Sarama; Sarama & Clements. These works also review the extensive research work on which all the learning trajectories are based.).

Instructional Tasks: The Paths of Teaching

The third part of a learning trajectory consists of set of instructional tasks, matched to each of the levels of thinking in the developmental progression. These tasks are designed to help children learn the ideas and skills needed to achieve that level of thinking. That is, as teachers, we can use these tasks to promote children's growth from one level to the next. The third column in Figure 1 provides example tasks. (Again, the complete learning trajectory in Clements & Sarama, includes not only all the developmental levels, but several instructional tasks for each level.)

Table 1. Samples from the Learning Trajectory for Counting (all examples from Clements & Sarama, Clements & Sarama, Sarama & Clements).

<table>
<thead>
<tr>
<th>Age</th>
<th>Developmental Progression</th>
<th>Instructional Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>Pre-Counter Verbal No verbal counting.</td>
<td>Associate number words with quantities and as components of the counting sequence.</td>
</tr>
<tr>
<td></td>
<td>Chanter Verbal Chants “sing-song” or sometimes-indistinguishable number words.</td>
<td>Repeated experience with the counting sequence in varied contexts.</td>
</tr>
<tr>
<td>2</td>
<td>Reciter Verbal Verbally counts with separate words, not necessarily in the correct order.</td>
<td>Provide repeated, frequent experience with the counting sequence in varied contexts.</td>
</tr>
</tbody>
</table>

Count and Race Children verbally count along with the computer (up to 50) by adding cars to a racetrack one at a time.
Developmental Progression

Reciter (10) Verbal Verbally counts to ten, with some correspondence with objects.

Corresponder Keeps one-to-one correspondence between counting words and objects (one word for each object), at least for small groups of objects laid in a line.

Counter (Small Numbers) Accurately counts objects in a line to 5 and answers the “how many” question with the last number counted.

Instructional Tasks

Count and Move Have all children count from 1-10 or an appropriate number, making motions with each count. For example, say, “one” [touch head], “two” [touch shoulders], “three” [touch head], and so forth.

Kitchen Counter At the computer, children click on objects one at a time while the numbers from one to ten are counted aloud. For example, they click on pieces of food and a bite is taken out of each as it is counted.

Cubes in the Box Have the child count a small set of cubes. Put them in the box and close the lid. Then ask the child how many cubes you are hiding. If the child is ready, have him/her write the numeral. Dump them out and count together to check.

Pizza Pizzazz 2 Children count items up to 5, putting toppings on a pizza to match a target amount.
<table>
<thead>
<tr>
<th>Age</th>
<th>Developmental Progression</th>
<th>Instructional Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Producer —Counter To (Small Numbers)</td>
<td>Count Motions During transitions, have children count how many times you jump or clap, or some other motion. Then have them do those motions the same number of times. Initially, count the actions with children.</td>
</tr>
<tr>
<td></td>
<td>Counts out objects to 5. Recognizes that counting is relevant to situations in which a certain number must be placed.</td>
<td>Pizza Pizzazz 3 Children add toppings to a pretend pizza (up to 5), to match target numerals.</td>
</tr>
<tr>
<td>5</td>
<td>Counter and Producer (10+)</td>
<td>Counting Towers (Beyond 10) To allow children to count to 20 and beyond, have them make towers with other objects such as coins. Children build a tower as high as they can, placing more coins, but not straightening coins already in the tower. The goal is to estimate and then count to find out how many coins are in your tallest tower.</td>
</tr>
<tr>
<td></td>
<td>Counts and counts out objects accurately to 10, then beyond (to about 30). Has explicit understanding of cardinality (how numbers tell how many).</td>
<td>Dino Shop 2 Children add dinosaurs to a box to match target numerals.</td>
</tr>
<tr>
<td></td>
<td>Keeps track of objects that have and have not been counted, even in different arrangements.</td>
<td></td>
</tr>
</tbody>
</table>

In summary, learning trajectories describe the goals of learning, the thinking and learning processes of children at various levels, and the learning activities in which they might engage. People often have several questions about learning trajectories.

Future Directions

Although learning trajectories have proven to be effective for early mathematics curricula and professional development, there have been too few studies that have compared various ways of implementing them. Thus, their exact role remains to be studied. Also, in the early years, several learning trajectories are based on considerable research, such as those for counting and arithmetic. However, others, such as patterning and measurement, have a smaller research base.
Further, there are few guidelines for many more sophisticated math topics for teaching older students. These remain challenges to the field.

Conclusions

Learning trajectories hold promise for improving professional development and teaching in the area of early mathematics. For example, the few teachers that actually led in-depth discussions in reform mathematics classrooms saw themselves not as moving through a curriculum, but as helping students move through levels of understanding.11 Further, researchers suggest that professional development focused on learning trajectories increases not only teachers’ professional knowledge but also their students’ motivation and achievement.12,13,14 Thus, learning trajectories can facilitate developmentally appropriate teaching and learning for all children.

Author Note:

This paper was based upon work supported in part by the National Science Foundation under Grant No. ESI-9730804 to D. H. Clements and J. Sarama “Building Blocks—Foundations for Mathematical Thinking, Pre-Kindergarten to Grade 2: Research-based Materials Development” and in small part by the Institute of Educational Sciences (U.S. Department of Education, under the Interagency Educational Research Initiative, or IERI, a collaboration of the IES, NSF, and NICHD) under Grant No. R305K05157 to D. H. Clements, J. Sarama, and J. Lee, “Scaling Up TRIAD: Teaching Early Mathematics for Understanding with Trajectories and Technologies.” Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The curriculum evaluated in this research has since been published by the authors, who thus have a vested interest in the results. An external auditor oversaw the research design, data collection, and analysis, and five researchers independently confirmed findings and procedures. The authors, listed alphabetically, contributed equally to the research.

References

Fostering Early Numeracy in Preschool and Kindergarten

Arthur J. Baroody, PhD
College of Education, University of Illinois at Urbana-Champaign, USA
July 2010

Introduction

How to best help students learn the single-digit (basic) addition facts, such as 3+4=7 and 9+5=14, and related subtraction facts, such as 7-3=4 and 14-9=5, has long been debated (see, e.g., Baroody & Dowker, particularly chapters 2, 3, 6, and 7). Nevertheless, there is general agreement that children need to achieve fact fluency. Fact fluency entails generating sums and differences efficiently (quickly and accurately) and applying this knowledge appropriately and flexibly. Over the last four decades, it has become increasingly clear that children’s everyday (informal) mathematical knowledge is an important basis for learning school (formal) mathematics. For example, research indicates that helping children build number sense can promote fact fluency. The aim of this entry is to summarize how the development of informal number sense before grade 1 provides a foundation for the key formal skill of fact fluency in the primary grades.

Key Research Questions

1. When should parents and early childhood educators begin (a) the process of promoting number sense and (b) efforts to foster fact fluency directly?

2. What are the developmental prerequisites preschoolers and kindergartners need to learn in order to efficiently and effectively achieve fact fluency?

3. What role does language play in the development of this foundational knowledge?

4. How can parents and early childhood educators most effectively encourage number sense and fact fluency?

Recent Research Results

Question 1. The process of helping children build number sense—the foundation of fact
fluency—can and should begin in the preschool years. Recent research indicates that children begin to construct number sense very early. Indeed, some toddlers as young as 18 months and nearly all 2-year-olds have begun learning the developmental prerequisites for fact fluency (e.g., see Baroody, Lai, & Mix,\(^3\) for a review).

Successful efforts to promote fact fluency depend on ensuring a child is developmentally ready and on not rushing the child. As research indicates significant individual differences in number sense appear as early as two or three years of age and often increase with age,\(^3,10\) there are no hard and fast rules about when formal training on fact fluency should begin. For many children though, this training, even with the easiest (n+0 and n+1) sums, may not be developmentally appropriate until late kindergarten or early first grade.\(^11\) For children at risk for academic failure, work with even the easiest sums often does not make sense until first or second grade.\(^12\)

Questions 2 and 3. Some research indicates that language, in the form of the first few number words, plays a key role in the construction of number sense (for a detailed discussion, see Baroody;\(^3\) Mix, Sandhofer, & Baroody\(^13\)). More specifically, it can provide a basis for two foundations of early number sense—namely a concept of cardinal number (the total number of items in a collection) and the skill of verbal number recognition (VNR), sometimes called “(verbal) subitizing,” shown at the apex of Figure 1. VNR entails reliably and efficiently recognizing the number of items in small collections and labeling them with the appropriate number word. The use of “one,” “two,” “three” in conjunction with seeing examples and non-examples of each can help 2- and 3-year-olds construct an increasingly reliable and accurate concept of the “intuitive numbers” one, two, and three—an understanding of oneness, twoness, and threeness.

* By seeing \(*, \bullet\bullet, \), and \(\circ\circ\) (examples of pairs), for instance, all labeled “two,” young children can recognize that the appearance of the items in the collections is not important (shape and color are irrelevant to number). It can also provide them a label (“two”) for their intuitive idea of plurality (more than one item).

* Seeing \(*, \bullet\bullet, \), \(\bullet\bullet\), and \(\bullet\bullet\) (non-examples of pairs) labeled as “not two” or with another number word can help them define the boundaries of the concept of two.

The key instructional implications are that a basic understanding of cardinal number is not innate nor does it unfold automatically (cf. Dehaene\(^15\)).\(^14,16\) Parents and preschool teachers are important in providing the experiences and feedback needed to construct number concepts. They should
take advantage of meaningful everyday situations to label (and encourage children) to label small collections (e.g., “How many feet do you have?” “So you need two shoes, not one.” “You may take one cookie, not two cookies.”). Some children enter kindergarten without being able to recognize all the intuitive numbers. Such children are seriously at risk for school failure and need intensive remedial work. Kindergarten screening should check for whether children can immediately recognize collections of one to three items and be able to distinguish them from somewhat larger collections of four or five.

As Figure 1 illustrates, the co-evolution of cardinal concepts of the intuitive numbers and the skill of VNR can provide a basis for a wide variety of number, counting, and arithmetic concepts and skills. These skills can provide a basis for meaningful verbal counting. Recognition of the intuitive numbers can help children literally see that a collection labeled “two” has more items than a collection labeled “one” and that a collection labeled “three” has more items than a collection labeled “two.” This basic ordinal understanding of number, in turn, can help children recognize that the order of number words matters when we count (the stable order principle) and that the number word sequence (“one, two, three...”) represents increasingly larger collections. As a child becomes familiar with the counting sequence, they develop the ability to start at any point in the counting sequence and (efficiently) state the next number word in the sequence (number-after skill) instead of counting from “one.”

The ability to automatically cite the number after another number in counting sequence, can be the basis for the insight that adding “one” to a number results in a larger number and, more specifically, the number-after rule for $n+1/1+n$ facts. When adding “one”, the sum is the number after the other number in the counting sequence (e.g., the sum of 7+1 is the number after “seven” when we count or “eight”). This reasoning strategy can enable children to efficiently deduce the sum of any such combination for which they know the counting sequence, even those not previously practiced including large multi-digit facts such as 28+1, 128+1, or 1,000,128+1. In time, this reasoning strategy becomes automatic—can be applied efficiently, without deliberation (i.e., becomes a component in the retrieval network). In other words, it becomes the basis for fact fluency with the $n+1/1+n$ combinations.

VNR, and the cardinal concept of number it embodies, can be a basis for meaningful object counting. Children who can recognize “one,” “two,” and “three” are more likely to benefit from adult efforts to model and teach object counting than those who cannot. They are also more likely to recognize the purpose of object counting (as another way of determining a collection’s total)
and the rationale for object-counting procedures (e.g., the reason why others emphasize or repeat the last number word used in the counting process is because it represents the collection’s total). Meaningful object counting is necessary for the invention of counting strategies (with objects or number words) to determine sums and differences. As these strategies become efficient, attention is freed to discover patterns and relations; these mathematical regularities, in turn, can serve as the basis for reasoning strategies (i.e., using known facts and relations to deduce the answer of an unknown combination). As these reasoning strategies become automatic, they can serve as one of the retrieval strategies for efficiently producing answers from a memory or retrieval network.

VNR can enable a child to see one & one as two, one & one & one as three, or two & one as three and the reverse (e.g., three as one & one & one or as two & one). The child thus constructs an understanding of composition and decomposition (a whole can be built up from, or broken down into, individual parts, often in different ways). Repeatedly seeing the composition and decomposition of two and three can lead to fact fluency with the simplest addition and subtraction facts (e.g., “one and one is two,” “two and one is three,” and “two take away one is one”). Repeatedly decomposing four and five with feedback (e.g., labeling a collection of four as “two and two”, and hearing another person confirm, “Yes, two and two makes four”) can lead to fact fluency with the simplest sums to five and is one way of discovering the number-after rule for n+1/1+n combinations (discussed earlier).

The concept of cardinality, VNR, and the concepts of composition and decomposition can together provide the basis for constructing a basic concept of addition and subtraction. For example, by adding an item to a collection of two items, a child can literally see that the original collection has been transformed into a larger collection of three. These competencies can also provide a basis for constructing a relatively concrete, and even a relatively abstract, understanding of the following arithmetic concepts:

- Concept of subtractive negation. For example, when children recognize that if you have two blocks and take away two blocks this leaves none, they may induce the pattern that any number take away itself leaves nothing.

- Concept of additive and subtractive identity. For example, when children recognize that two blocks take away none leaves two blocks, they may induce the regularity that if none is taken from any number, the number will remain unchanged. The concepts of subtractive
A weak number sense, then, can interfere with achieving fact fluency and other aspects of mathematical achievement. For example, Mazzocco and Thompson19 found that preschoolers’ performance on the following four items of the Test of Early Mathematics Ability—Second Edition (TEMA-2) was predictive of which children would have mathematical difficulties in second and third grade: meaningful object counting (recognizing that the last number word used in the counting process indicates the total), cardinality, comparing of one-digit numbers (e.g., Which is more five or four?), mentally adding one-digit numbers, and reading one-digit one numerals. Note that verbal number recognition of the intuitive numbers is a foundation for the first three skills and meaningful learning of the fourth.

Question 4. The basis for helping students build both number sense in general and fact fluency in particular is creating opportunities for them to discover patterns and relations. For example, a child who has learned the “doubles,” such as 5+5=10 and 6+6=12, in a meaningful manner (e.g., the child recognizes that the sums of this family are all even or count-by-two numbers) can use this knowledge to reason out the sums of unknown doubles-plus-one facts, such as 5+6 or 7+6.

In order to be developmentally appropriate, such learning opportunities should be purposeful, meaningful, and inquiry-based.20

- Instruction should be purposeful and engaging to children. This can be achieved by embedding instruction in structured play (e.g., playing a game that involves throwing a die can help children learn to recognize regular patterns of one to six). Music and art lessons can serve as natural vehicles for thinking about patterns, numbers, and shapes (e.g., keeping a beat of two or three; drawing groups of balloons). Parents and teachers can take advantage of numerous everyday situations (e.g., “How many feet do you have? ...So, how many socks should you get from your sock drawer?”). Children’s questions can be an important source of purposeful instruction.

- Instruction should be meaningful to children, building gradually on (and being connected to) what they know. A meaningful goal for adults working with 2-year-olds is to have children recognize two. Pushing them too fast to recognize larger numbers such as *four* can be overwhelming, causing them to melt down (become inattentive or aggressive, guess wildly,
or otherwise disengage from the activity).

- Instruction should be inquiry based, or thought provoking, to the extent possible. Instead of simply feeding children information, parents and teachers should give children an opportunity to think about a problem or task, make conjectures (educated guesses), devise their own strategy or deduce their own answer.

The various points above are illustrated by the case of Alice21 and Lukas.22

- \textit{The case of Alice.} The 2.5-year-old had for several months been able to recognize one, two, or three things. So her parents wanted to expand her number range to four, which was now just outside her range of competence. Instead of simply labeling collections of four for her, they asked her about collections of four. Alice often responded by decomposing the unrecognizable collections into two familiar collections of two. Her parents then built on her response by saying, “Two and two is four.” At 30 months of age, shown a picture of four puppies, Alice put two fingers of her left hand on two dogs and said, “Two.” While maintaining this posture, she placed two fingers of her right hand on the other two puppies and said, “Two.” She then used the known relation “2 and 2 makes 4” (learned from her parents) to specify the cardinal value of the collection.

- \textit{The case of Lukas.} In the context of a computer-based math game, Lukas was presented 6+6. He determined the sum by counting. Shortly afterward, he was presented 7+7. He smiled and answered quickly, “Thirteen.” When the computer feedback indicated the sum was 14, he seemed puzzled. A couple of items later, he was presented 8+8 and noted, “I was going to say 15, because 7+7 was 14. But before 6+6 was 12, I thought for sure that 7+7 would be 13 but it was 14. So I’m going to say 8+8 is 16.”

\textbf{Future Directions}

Much still needs to be learned about preschoolers’ mathematical development. Does VNR ability at two years of age predict readiness for kindergarten or mathematical achievement in school? If so, can intervention that focuses on examples and non-examples enable children at risk for academic failure to catch up with their peers? What other concepts or skills at two or three years of age might be predictive of readiness for kindergarten or mathematical achievement in school? How effective are the early childhood mathematics programs currently being developed?

\textbf{Conclusions}
Contrary to the beliefs of many early childhood educators, mathematics instruction for children as young as two years of age does make sense.23,24,25,26 As Figure 1 makes clear, this instruction should start with helping children construct a cardinal concept of the intuitive numbers and the skill of recognizing and labeling sets of one to three items with an appropriate number word. As Figure 1 further illustrates, these aspects of number knowledge are key to later numeracy and often lacking among children with mathematical disabilities.27 Early instruction does not mean imposing knowledge on preschoolers, drilling them with flashcards, or otherwise having them memorize by rote arithmetic facts. Fostering number sense and fact fluency both should focus on helping children discover patterns and relations and encouraging their invention of reasoning strategies.

\textbf{Figure 1. Learning Trajectory of Some Key Number, Counting, & Arithmetic Concepts and Skills}
The research described was supported, in part, by a grant from the National Science Foundation (BCS-0111829), the Spencer Foundation (Major Grant 200400033), the National Institutes of Health (1 R01 HD051538-01), and the Institute of Education Science (R305K050082). The opinions expressed in the present manuscript are solely those of the author and do not necessarily reflect the position, policy, or endorsement of the aforementioned institutions.

References

Mathematics Instruction for Preschoolers

Jody L. Sherman-LeVos, PhD
University of California, Berkeley, USA
July 2010

Introduction

Teaching mathematics to young children, prior to formal school entry, is not a new practice. In fact, early childhood mathematics education (ECME) has been around in various forms for hundreds of years.\(^1\) What has altered over time are opinions related to why ECME is important, what mathematics education should accomplish, and how (or whether) mathematics instruction should be provided for such young audiences.

Subject and Research Context

Is ECME necessary?

A concern among many early childhood experts, including educators and researchers, is the recent trend toward the “downward extension of schooling”\(^2\) such that curricula, and the corresponding focus on assessment scores that were formally reserved for school-aged children, are now being pushed to preschool levels.\(^3\) The motivation behind this downward push of curriculum appears to be largely political, with an increasing emphasis on early success, improving test scores, and closing gaps among specific minority and socio-economic groups.\(^4\)

Despite the concern related to the downward extension of school-aged curricula in general, there are persuasive factors encouraging the presence of at least some type of mathematical instruction for preschoolers, or at least for some groups of preschoolers. As Ginsburg et al. point out, learning mathematics is “a ‘natural’ and developmentally appropriate activity for young children”;\(^1\) and through their everyday interactions with the world, many children develop informal concepts about space, quantity, size, patterns, and operations. Unfortunately, not all children have the same opportunities to build these informal, yet foundational, concepts of mathematics in their day-to-day lives. Subsequently, and because equity is such an important aspect of mathematics education, ECME seems particularly important for children from marginalized groups,\(^3\) such as special needs children, English-as-additional-language (EAL)
learners, and children from low socio-economic status (SES), unstable, or neglectful homes.⁴

Recent Research Results

Equity in education is one major argument for the presence of ECME, but intimately tied to equity is the aspect of helping young mathematical minds move from informal to formal concepts of mathematics, concepts that have names, principles and rules. Children’s developing mathematical concepts, often building on informal experiences, can be represented as learning trajectories⁵ that highlight how specific mathematical skills can build upon preceding experiences and inform subsequent steps. For example, learning the names, order and quantities of the “intuitive numbers” 1-3, and recognizing these values as sets of objects, number words, and as parts of wholes (e.g., three can be made up of 2 and 1 or 1 + 1 + 1), can help children develop an understanding of simple operations.⁶ “Mathematizing,” or providing appropriate mathematical experiences and enriching those experiences with mathematical vocabulary, can help connect children’s early and naturally occurring curiosities and observations about math to later concepts in school.³ Researchers have found evidence to suggest very early mathematical reasoning,¹,⁶,⁷ and ECME can help children formalize early concepts, make connections among related concepts, and provide the vocabulary and symbol systems necessary for mathematical communication and translation (for an example, see Baroody’s paper⁶).

ECME may be important for reasons beyond equity and mathematization. In an analysis of six longitudinal studies, Duncan et al.⁸ found that children’s school-entry math skills predicated later academic performance more strongly than attentional, socioemotional or reading skills. Similarly, early difficulty with foundation mathematical concepts can have lasting effects as children progress through school. Given that math skills are so important for productive participation in the modern world (Platas L, unpublished data, 2006),⁹ and that specific mathematical domains, such as algebra, can serve as a gatekeeper to higher education and career options,¹⁰ early, equitable and appropriate mathematical experiences for all young children are of critical importance.

What is “appropriate” ECME?

Views differ with respect to what ECME should consist of and how it should be infused into preschoolers’ lives, with a continuum that represents the amount of intervention or instruction proposed. On one end of the continuum is a very direct, didactic, and teacher-centered approach
to ECME, while the other end of the spectrum represents a play-based, child-centered, non-didactic approach to ECME. Individual children, and perhaps different groups of children, may benefit from varying levels of instruction throughout the continuum, and much research remains to be done to better understand best practices for all children and all aspects of mathematics. One example of a research-based mathematics curriculum for young children is Building Blocks, a program designed to support and enhance children’s developing mathematical thinking (i.e., learning trajectories) through the use of computer games, everyday objects (i.e., manipulatives such as blocks), and print. Building Blocks represents an attempt to align content and instructional activities with the learning trajectories of well-researched domains such as counting. The learning trajectories of other domains, such as measurement and patterning, are not yet well understood.

Ginsburg et al. described six components that should be present in all forms of ECME (e.g., programs such as Building Blocks), including environment, play, teachable moments, projects, curriculum, and intentional teaching. For example, regardless of where a particular mathematics curriculum falls on the playful–didactic continuum, environment is a vital component of early education. Specifically, providing preschool children with materials that inspire mathematical thinking, such as blocks, shapes, and puzzles, can facilitate the development of foundational skills such as patterning, making comparisons, and early numeracy. Another important component is that of the teachable moment: recognizing and capitalizing on children’s spontaneous math-related discoveries by asking questions that require children to reflect and respond, by providing vocabulary and representational support, and by demonstrating extension activities that elaborate on and further support mathematical ideas.

Perhaps the most popular component of ECME in the current literature is play. Many proponents of play-based learning, or learning through play, argue that children learn a great deal when they discover mathematical ideas on their own in natural or minimally contrived situations. Some argue that play is being taken out of preschools in reaction to the downward extension of schooling and testing, and they provide data to suggest that children in early grades (including kindergarten) now spend far more time on test preparation than they do on play-based activities. Even many educational toys appear marketed more toward early learning of academic concepts (i.e., literacy for toddlers) than toward playful learning per se. This approach may be driven in part by parents’ views on the importance of early education for future academic success. Much research remains to be done on the impact of educational toys, technology, play (or lack thereof),
and various ECME curricula on preschoolers’ mathematical development.

Research Gaps and Implications

What are the barriers to effective early education?

Mathematics for preschool children is complicated by several factors, including political pressure (i.e., achievement scores, funding, varying curriculum standards), individual differences among preschoolers (i.e., individual children may benefit from different mathematical opportunities), ideological differences regarding education (i.e., playful–didactic continuum), and gaps in developmental research (i.e., uncertain learning trajectories for some mathematical concepts). Complicating ECME further are barriers that affect the implementation of mathematical instruction (regardless of curriculum), such as teachers’ own fears or misunderstandings of mathematics. Unfortunately, many preschool educators lack training directly related to mathematics for young children (Platas L, unpublished data, 2006). Teachers need knowledge of what children know, knowledge of how children learn new concepts, knowledge of most effective teaching strategies, and the mathematical concepts themselves (Platas L, unpublished data, 2006). Improving the mathematical training opportunities for early educators may help to improve the quality (and quantity) of mathematics instruction for young children.

Conclusion

The debate surrounding ECME does not appear to be about whether early exposure to mathematical experiences and ideas is important; the general consensus is that it is important. Rather, the issue is how, when, why and for whom specific approaches to ECME should be presented. Opinions differ regarding the amount of structure versus free-play and specific curriculum versus teachable moments. Yet as evidence accumulates regarding very young children’s developing mathematical ideas (i.e., learning trajectories), attempts to align cognitive development with best instructional practices (or with the best environments to support natural mathematical discoveries) may help pave the way for equitable and appropriate mathematical experiences for all preschool children.

References

